Molecular Basis of Resistance to Fusarium Ear Rot in Maize
نویسندگان
چکیده
The impact of climate change has been identified as an emerging issue for food security and safety, and the increased incidence of mycotoxin contamination in maize over the last two decades is considered a potential emerging hazard. Disease control by chemical and agronomic approaches is often ineffective and increases the cost of production; for this reason the exploitation of genetic resistance is the most sustainable method for reducing contamination. The review focuses on the significant advances that have been made in the development of transcriptomic, genetic and genomic information for maize, Fusarium verticillioides molds, and their interactions, over recent years. Findings from transcriptomic studies have been used to outline a specific model for the intracellular signaling cascade occurring in maize cells against F. verticillioides infection. Several recognition receptors, such as receptor-like kinases and R genes, are involved in pathogen perception, and trigger down-stream signaling networks mediated by mitogen-associated protein kinases. These signals could be orchestrated primarily by hormones, including salicylic acid, auxin, abscisic acid, ethylene, and jasmonic acid, in association with calcium signaling, targeting multiple transcription factors that in turn promote the down-stream activation of defensive response genes, such as those related to detoxification processes, phenylpropanoid, and oxylipin metabolic pathways. At the genetic and genomic levels, several quantitative trait loci (QTL) and single-nucleotide polymorphism markers for resistance to Fusarium ear rot deriving from QTL mapping and genome-wide association studies are described, indicating the complexity of this polygenic trait. All these findings will contribute to identifying candidate genes for resistance and to applying genomic technologies for selecting resistant maize genotypes and speeding up a strategy of breeding to contrast disease, through plants resistant to mycotoxin-producing pathogens.
منابع مشابه
Genetic of resistance to ear rot causal agent (Fusarium moniliforme) in quality protein maize (QPM) using line×tester analysis
Breeding for QPM ear rot resistant cultivars could offer a reliable environmental and economic control of mycotoxins especially for the resource-poor communities that require inexpensive protein diets. This research aims at evaluating a testcross of QPM inbreds with ear rot resistant cultivars to develop resistant topcrosses with high grain protein quality and yield. Seven QPM inbreds (lines) a...
متن کاملThe Mechanisms of Maize Resistance to Fusarium verticillioides by Comprehensive Analysis of RNA-seq Data
Fusarium verticillioides is the most commonly reported fungal species responsible for ear rot of maize which substantially reduces grain yield. It also results in a substantial accumulation of mycotoxins that give rise to toxic response when ingested by animals and humans. For inefficient control by chemical and agronomic measures, it thus becomes more desirable to select more resistant varieti...
متن کاملMycotoxins produced byFusarium species associated with maize ear rot in Iran
Mycotoxins contamination is one of the most important problems worldwide in maize that can cause serious threat for human and animal health. The aim of this study was to determine the ability of Fusarium species associated with maize ear rot to produce diverse mycotoxins. The results showed, One out of three isolates of F. subglutinans produced detectable level of beauvericin ...
متن کاملEvaluation of GEM Germplasm for Multiple Insect Resistance and Fumonisin Concentration
The Western corn rootworm (WCR) and the European corn borer (ECB) are serious pests of maize in the U.S. Secondary infections with Fusarium verticillioides, F. proliferatum, and F. subglutinans occur after ECB larvae feeding, causing ear rots and contamination with fumonisin, a mycotoxin associated with severe animal and human health disorders. The tolerance of maize germplasm adapted to the Mi...
متن کاملDiallel Analysis of Resistance to Fusarium Ear Rot and Fumonisin Contamination in Maize
The fungus Fusarium verticillioides infects maize (Zea mays L.) ears and kernels, resulting in Fusarium ear rot disease, reduced grain yields, and contamination of grain with the mycotoxin fumonisin. Hybrid maize breeding programs involve selection for both inbred and hybrid performance; the emphasis placed on inbred versus hybrid selection depends on heritability of and the genetic correlation...
متن کامل